|
三维实体速成最简单入门法[第15集] 2007-3-10 18:30]- h/ J4 u. p4 j1 }6 t# J+ d, ]
2 C4 S; z0 w, y+ G# m1、通过足球实例说明用数学知识建模的特点,输入数据来实现。
* L7 {1 v; K1 h4 R2、数学上对于正多面体,仅只有正4、6、8、12、20多面体这五种,搜索了点资料在下面
+ D i# I% |" g1 i2 J0 m9 h. L3、五种正多体通过变化,就可以画出相当多的奇形怪状的球体来,对于练习是相当有益的,尤其是思路的开拓非常好
; c* i3 f7 f; o7 i) T/ z I
$ N9 Z# a3 u. h( o! n
' A2 U b( T& b. x三维实体速成最简单入门法[第41集] 2007-6-27 11:19% h7 d: s# L# I1 y
% s! f* L: x$ ~: N* r1、画五角星的原理--拉伸正棱锥,出了两个小题很有意思--正四棱台,上底面积为下底面积的一半。7 U, ?1 s: n+ F( B2 Z
2、足球---借这个例子来体会实体拉伸中“拉伸高度”与“倾斜角”的关系(这次是精确算出角度,15集是精确算出高度)9 ~9 K4 C8 z9 g$ h! B
3、下面来摸索一下“正多面体的画法”---还是靠数学知识推导进行作图。
2 x) j* q9 l$ n3 D5 Z正多面体有且只有5种,即正四面体、正六面体、正八面体、正十二面体和正二十面面体。5种实体画法,全是个人计算推导,然后构思的,如果大家有更好更快的办法,欢迎批评指正。小弟本想写出证明的,比较繁琐,也没多大必要。在下面的演示中,是“倾斜角”画法,这种画法的巧妙之处是利用了CAD中“拉伸如果汇集到一点时则拉伸自动停止”,这样就相当于省略一个条件了。顺便说一句,CAD中这个规定虽然老早就知道,真正没想到有可利用的价值,直到近期在实践中才体会到的。
; [0 l$ T- a6 W) h y关于球体的变化[如足球],这些都可归结到一种数学模型来分析,所以对数学有兴趣的话,容易抓到本质的内在的东西。通过画模型的基础练习后,如果对这些模型进行变化,那么许多奇奇怪怪的“足球”自己就可以随意“发明”了。
4 ^" {/ ~! ?, R6 w/ B6 z$ y6 yzzzzzzzzz版主估计就自己摸索了,请看帖子
6 W* G$ I! t! N- I6 T' ?http://www.askcad.com/bbs/thread-15826-1-1.html
0 }9 E& H d3 F% Z' g$ C/ z1 c% B) ^2 j/ m" U( D! \2 t7 [6 H6 x
3 y& s" }9 {7 n4 H- m
& T" s5 U+ k8 Y: \, Y6 X9 J
& _: V: W( A- H c) I以上文字引自:
, E% o: p2 P9 `# S$ v' j7 x2 phttp://www.askcad.com/bbs/thread-13428-1-24.html |
|