本帖最后由 xsbf 于 2011-5-4 13:15 编辑
1 F- l( k4 m+ ^+ u8 n4 ^
$ m& Z9 `$ o6 I/ B在平面上用两条圆弧围成一个弯月亮,要求这个月亮的面积必须为整数,感兴趣的朋友可以画一画,试试看,答案不是唯一的。
8 Z( z6 Y9 O& U7 f9 s6 R; I; Y5 h B0 O' h# W; Q
关于这个题目,可能有人咋一看觉得非常之简单,但是又发现基本上不可能的事。我先作一下分析:
# c8 | j' h; u' Z/ t$ E; v" a1.可以画一个面积为整数面积的圆吗?理论上可以,实质上手工是画不出来的,为什么呢?因为圆的面积公式S=πr2,如果S为整数,则r就需要是诸如根号(1/π) 这样的式子,否则消除不了π。最要命的是“π”是超越数,也就是根本不可能通过通常作图的方法在有限次内画出来,所以画一个面积为整数面积的圆是画不出来的,同样地,画一个周长为整数的圆,画一个面积为整数的扇形,画一个面积为的整数的圆环,画一段长度为整数的圆弧……,这些皆是不可能的,但理论上允许存在,别说整数了,做成有理数事实上也办不到。
4 T) ]- M( q3 x! R- N9 Z2.通过以上分析,似乎发现一个现象,但凡有‘圆弧’参加到图形中的东西都不能得到整数,咋一想觉得这个“定理”能够成立的,因为有圆弧这样弯弯的东西,它离不开π,而π是不能作出图来的,只要不消除π的存在,就不可能得到有理数,更不说整数了。! B% u% u, O# i
3.但是,数学就是这样奇妙,第2点的观点横看竖看都觉得说得在理,但这是伪命题,事实上有圆弧参加的地方同样可以得到整数,不是停留在理论上存在,而是肯定能画出来的。这道题目由两段圆弧围成的月亮,面积就可以是整数,见附件文件。0 `, S- X% o0 C( Y5 m
& y8 Z. y" j9 S0 z
请感兴趣的朋友,自己用CAD画一画,看看能不能画出整数面积的月亮来(答案肯定有无限多个,只要画出一个整数面积的月亮,比例放大一定倍数,又是一个整数月亮。),另外也请感兴趣的朋友试试有‘圆弧’参加的情况(不仅限这种月亮形,什么形状都行,但必须含有弯弯的圆弧),能够得到整数面积(或周长)的图形。
* o t5 b M; `, o: s; l# P
- {2 }$ K: e: d% \附1:其实这个“月亮”图形,在数学历史上非常有名,古人用来研究“化圆为方”的问题,虽然“化圆为方”是不可能的,但不是说凡是含有“圆”因素的东西皆不可成“方”,本例中就是“化圆为方”特例。
( r+ k; O( y) \3 D) _附2:前面说π不能画出是指,不能在数轴上找到某个点就是π,这个点只能人为地指定,而不能准确地画出来,同样地e、lg2、sin1……这些都不能在数轴上画出精确的位置,因为它们是超越数。但是如根号29 这些数就可以精确地画出来,因为它不是超越数。 |